A pilot-scale bioreactor for new food pilot processes

GEA Axenic® P for Pilot Processes

GEA Axenic® P is a flexible pilot-scale bioreactor designed to help you scale up cell cultivation and precision fermentation processes for a wide range of new food applications.

Pilot-scale bioreactor for cell cultivation and fermentation in the food sector

The Axenic® P is a highly versatile, fully featured bioreactor that puts you in control when it’s time to transfer your bench-scale cell cultivation and fermentation processes into a pilot-scale production setup. Designed specifically for new food applications, the pilot-scale Axenic® P helps you derive key data that will let you more seamlessly transition up to commercial manufacture, whether you are developing cultivated meat, precision-engineered dairy products, or a fungal mycelium.

Industrially relevant, actionable insights at pilot scale

We have decades of expertise developing and installing industrial bioreactors for the global brewery, dairy and pharma sectors, as well as for emerging new food applications. We’ve used this detailed understanding of all the complexities associated with bioprocessing at commercial scale, to develop a versatile, industrially relevant pilot-scale bioreactor. The Axenic® P accurately recapitulates conditions in factory units, including our Axenic® C and Axenic® M bioreactors, to generate actionable insight on how key factors such as oxygen transfer rates, pH changes and media concentrations, as well as bioreactor structure and physical setup, impact on cell health, process stability and, ultimately, yield. 

Using virtual modelling to understand and optimize tank conditions and cell behavior 

The Axenic® P supports a wide range of physical bioreactor configurations and operating conditions, and features a package of sensors that that collect key data on tank conditions, gas delivery and uptake. If you need to take a deeper dive into understanding how your strain behaves in certain environments we offer an optional suite of sensors to measure off gas analysis, metabolic heat generation and acidification rates. The Axenic® P in addition uses the same recipe management system, GEA Codex® automation platform and GEA Codex® Historian data management platform as our industrial bioreactor units. 

The collective data derived from testing your cells and process on the Axenic® P will give you a great starting point for understanding how your cells will behave as you upscale, so you can make modifications and adjustments to process parameters and the bioreactor environment, which you can evaluate through additional rounds of testing on the unit. We can also transfer, more or less directly, just about all of your pilot-scale process, sensor and physical data – down to the bioreactor dimensions – into a digital twin on our virtual bioreactor test bench. The digital twin lets us carry out risk free modelling to assess what happens within the tank, and how your cells might respond, as you scale up to industrial volumes. Virtual modelling gives us free rein to investigate and better understand how media and gases are distributed and behave under different conditions as the volume increases. This helps us to outline what your cells will need, and where there may be limitations, or a risk that the upscaled system may generate conditions that hinder or have an adverse effect on, your cells.  This actionable insight then lets us design and fine tune the best physical bioreactor, and outline optimum operating conditions, for your commercial process. 

Highly adaptable, reusable system for a wide range of applications

Unlike pilot scale systems and single-use bioreactors that are only suitable for specific cell types or processes, the Axenic P is designed for life, and to let you evaluate a wide range of cell types, processes and setups. The unit is fully reusable, features swappable components, including autoclavable parts and integrated CIP. Multiple inlets for media and gas delivery allow you to configure the system for fermentation or cultivation using a wide range of prokaryotic or eukaryotic cell types. 

The Axenic® P can be configured as a standalone, self-contained unit into which you can dose media and other ingredients manually. The unit can also be connected, via replaceable hoses and its bank of inlets/outlets, to media tanks and upstream and downstream equipment. Importantly, the design is also relatively simple and user friendly, so you have flexibility to manually adjust and fine tune. However you configure the unit, it’s relatively straightforward to swap key components to suit application, cell type, and conditions. For example, you can change the agitator impellers, or take them out to use the system as a bubble column. Once purchased, we expect your Axenic® P to give you a lifetime of service, both for developing new cell-based products in the new foods sector, and also as a test system for troubleshooting existing commercial processes.

Concepts for process sustainability and energy efficiency

We know how important it is to consider process sustainability, and so we are always looking to develop and implement technologies and practices that can ultimately help to reduce energy and resource use, and improve carbon footprint.

The Axenic® P system uses split range control technology to adjust oxygen delivery in the bioreactor by letting you independently control the delivery flow rate, or the agitator speed. This makes it possible to run the most energy efficient path for increasing oxygen delivery. We can provide the starting settings, and then further optimize those parameters as you scale up. 

GEA aseptic valves and nozzles

Also helping to reduce environmental impact, GEA has developed a range of aseptic valves, and CIP spray nozzles, so that you can maintain the Axenic® P equipment with the least possible disruption to uptime, and with minimal manual intervention, where possible. Our component designs could potentially save on water, cleaning fluids, and cleaning time, by enabling faster maintenance, and effective, efficient CIP. Even small changes that can help reduce the use of resources, create less waste, reduce risks and manual tasks, and improve up time, can collectively have a positive impact on process sustainability. 

 

 

 

Axenic is registered as a trademark in several countries worldwide.

 

GEA インサイト

持続可能な冷凍で将来を見据えたコールドチェーンを

質の高いコールドチェーン管理の重要性を過小評価することはできません。傷みやすい生鮮食品が消費地で安全かつ高品質であることを保証することは、コールドチェーン施設を運営する人々にとって非常に大きな責任です。GEAは、低温貯蔵や配送センター向けに安全で持続可能な冷凍技術を提供する最前線に立ち、お客様の施設のエネルギー消費量と二酸化炭素排出量の削減を支援しています。

Josep Masramón and his daughter stand in front of their GEA batch milking installation.

バッチ搾乳が現代の酪農を支える理由

自動搾乳における最新の進化は、バッチ搾乳を導入することです。バッチ搾乳とは、通常1日に2~3回、決まった搾乳時間に乳牛をグループ分けして搾乳する酪農方法です。自動化技術は、酪農場における乳牛の福祉、柔軟性、そして持続可能性のバランスを取りつつ、それと同時にコスト構造を継続的に最適化し、より効率的になるという、酪農家の最近の課題を克服するのに役立っています。

何もないところから

多数の国では、安全な水と衛生設備を確保することがいまだに課題となっています。汚れの混じった飲用水により病気になったり、毎日水を汲みに行くという役割を果たすため、学校に通うことができない子供たちが多数存在します。ドイツのハンブルクを拠点とする非営利団体Viva con Aguaと協力することで、GEAは一部のタンザニアの学校にきれいな水を供給する手助けをしています。

GEA の最新情報をお届け

GEA からのニュース配信にサインアップして頂ければ、GEA のイノベーションやストーリーの最新情報を受け取ることができます。

連絡先

ご要望をお伺いいたします。ご要望の詳細をご入力いただければ、お問い合わせに回答いたします。